Vector Algebra Question 29

Question: The value of k for which the vectors $ \mathbf{a}=\mathbf{i}-\mathbf{j} $ and $ \mathbf{b}=-2,\mathbf{i}+k,\mathbf{j} $ are collinear is

[Pb. CET 2004]

Options:

A) 2

B) $ \frac{1}{2} $

C) $ \frac{1}{3} $

D) 3

Show Answer

Answer:

Correct Answer: A

Solution:

  • Since $ \mathbf{a} $ and $ \mathbf{b} $ are collinear, we have $ \mathbf{a}=m\mathbf{b} $ for some scalar m. Þ $ \mathbf{i}-\mathbf{j}=m(-2\mathbf{i}+k\mathbf{j}) $
    Þ $ \mathbf{i}-\mathbf{j}=-2m\mathbf{i}+km\mathbf{j} $
    Þ $ -2m=1,,km=-1 $ \ $ m=-\frac{1}{2}, $ So $ k=2 $ .