Vector Algebra Question 290

Question: If vectors $ \mathbf{a},,b,,\mathbf{c} $ satisfy the condition $ |\mathbf{a}-\mathbf{c}|=|\mathbf{b}-\mathbf{c}| $ , then $ (\mathbf{b}-\mathbf{a}),.,( \mathbf{c}-\frac{\mathbf{a}+\mathbf{b}}{\mathbf{2}} ) $ is equal to

[AMU 1999]

Options:

A) 0

B) ?1

C) 1

D) 2

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ (\mathbf{b}-\mathbf{a}),.,( \mathbf{c}-\frac{\mathbf{a}+\mathbf{b}}{2} )=\mathbf{b},.,\mathbf{c}-\mathbf{b},.,( \frac{\mathbf{a}+\mathbf{b}}{2} ),-\mathbf{a},.,\mathbf{c}+\frac{\mathbf{a}}{2}(\mathbf{a}+\mathbf{b}) $ and $ |\mathbf{a}-\mathbf{c}|,=,|\mathbf{b}-\mathbf{c}| $
    $ \Rightarrow $ $ ,|\mathbf{a}-\mathbf{c}{{|}^{2}},=,|\mathbf{b}-\mathbf{c}{{|}^{2}} $ \ $ \mathbf{a}+\mathbf{b}=2\mathbf{c} $ Therefore, $ (\mathbf{b}-\mathbf{a}).,( \mathbf{c}-\frac{\mathbf{a}+\mathbf{b}}{2} )=0. $