Vector Algebra Question 295

Question: A unit vector a makes an angle $ \frac{\pi }{4} $ with z-axis. If $ \mathbf{a}+\mathbf{i}+\mathbf{j} $ is a unit vector, then a is equal to

[IIT 1988]

Options:

A) $ \frac{\mathbf{i}}{2}+\frac{\mathbf{j}}{2}+\frac{\mathbf{k}}{\sqrt{2}} $

B) $ \frac{\mathbf{i}}{2}+\frac{\mathbf{j}}{2}-\frac{\mathbf{k}}{\sqrt{2}} $

C) $ -\frac{\mathbf{i}}{2}-\frac{\mathbf{j}}{2}+\frac{\mathbf{k}}{\sqrt{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • Let $ \mathbf{a}=l\mathbf{i}+m\mathbf{j}+n\mathbf{k}, $ where $ l^{2}+m^{2}+n^{2}=1. $ a makes an angle $ \frac{\pi }{4} $ with $ z- $ axis.
    $ \therefore n=\frac{1}{\sqrt{2}}, $ $ l^{2}+m^{2}=\frac{1}{2} $ ?..(i)
    $ \therefore \mathbf{a}=l,\mathbf{i}+m,\mathbf{j}+\frac{\mathbf{k}}{\sqrt{2}} $ $ \mathbf{a}+\mathbf{i}+\mathbf{j}=(l+1)\mathbf{i}+(m+1)\mathbf{j}+\frac{\mathbf{k}}{\sqrt{2}} $ Its magnitude is 1, hence $ {{(l+1)}^{2}}+{{(m+1)}^{2}}=\frac{1}{2} $ …..(ii) From (i) and (ii), $ 2lm=\frac{1}{2}\Rightarrow l=m=-\frac{1}{2} $ Hence $ \mathbf{a}=-\frac{\mathbf{i}}{2}-\frac{\mathbf{j}}{2}+\frac{\mathbf{k}}{\sqrt{2}} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें