Vector Algebra Question 297

Question: If a, b, c, d be the position vectors of the points A, B, C and D respectively referred to same origin O such that no three of these points are collinear and $ \mathbf{a}+\mathbf{c}=\mathbf{b}+\mathbf{d}, $ then quadrilateral ABCD is a

Options:

A) Square

B) Rhombus

C) Rectangle

D) Parallelogram

Show Answer

Answer:

Correct Answer: D

Solution:

  • Given $ \mathbf{a}+\mathbf{c}=\mathbf{b}+\mathbf{d}\Rightarrow \frac{1}{2}(\mathbf{a}+\mathbf{c})=\frac{1}{2}(\mathbf{b}+\mathbf{d}) $ Here, mid points of $ \overrightarrow{AC} $ and $ \overrightarrow{BD} $ coincide, where $ \overrightarrow{AC} $ and $ \overrightarrow{BD} $ are diagonals. In addition, we know that diagonals of a parallelogram bisect each other. Hence quadrilateral is parallelogram.