Vector Algebra Question 298

Question: If $ |\mathbf{a}|=3,,|\mathbf{b}|=4 $ and $ |\mathbf{a}+\mathbf{b}|=5, $ then $ |\mathbf{a}-\mathbf{b}|= $

[EAMCET 1994]

Options:

A) 6

B) 5

C) 4

D) 3

Show Answer

Answer:

Correct Answer: B

Solution:

  • We have $ |\mathbf{a}+\mathbf{b}{{|}^{2}}+|\mathbf{a}-\mathbf{b}{{|}^{2}}=2(|\mathbf{a}{{|}^{2}}+|\mathbf{b}{{|}^{2}}) $
    $ \therefore ,25+|\mathbf{a}-\mathbf{b}{{|}^{2}}=2(9+16)\Rightarrow |\mathbf{a}-\mathbf{b}|=5 $ .