Vector Algebra Question 307

Question: The cartesian equation of the plane $ \mathbf{r}=(1+\lambda -\mu )\mathbf{i}+(2-\lambda )\mathbf{j}+(3-2\lambda +2\mu )\mathbf{k} $ is

Options:

A) $ 2x+y=5 $

B) $ 2x-y=5 $

C) $ 2x+z=5 $

D) $ 2x-z=5 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • We have $ \mathbf{r}=(1+\lambda -\mu )\mathbf{i}+(2-\lambda )\mathbf{j}+(3-2\lambda +2\mu )\mathbf{k} $
    Þ $ \mathbf{r}=(\mathbf{i}+2\mathbf{j}+3\mathbf{k})+\lambda (\mathbf{i}-\mathbf{j}-2\mathbf{k})+\mu (-\mathbf{i}+2\mathbf{k}) $ , which is a plane passing through $ \mathbf{a}=\mathbf{i}+2\mathbf{j}+3\mathbf{k} $ and parallel to the vectors $ b=\mathbf{i}-\mathbf{j}-2\mathbf{k} $ and $ \mathbf{c}=-\mathbf{i}+2\mathbf{k} $ Therefore, it is perpendicular to the vector $ \mathbf{n}=\mathbf{b}\times \mathbf{c}=-2\mathbf{i}-\mathbf{k} $ Hence, its vector equation is $ (\mathbf{r}-\mathbf{a}).\mathbf{n}=0 $
    Þ $ \mathbf{r}.\mathbf{n}=\mathbf{a}.\mathbf{n}\Rightarrow \mathbf{r}.(-2\mathbf{i}-\mathbf{k})=-2-3 $
    $ \Rightarrow \mathbf{r}.(2\mathbf{i}+\mathbf{k})=5 $ So, the cartesian equation is $ (x\mathbf{i}+y\mathbf{j}+z\mathbf{k}).(2\mathbf{i}+\mathbf{k}) $ =5 or $ 2x+z=5 $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें