Vector Algebra Question 310

The length of the perpendicular from the origin to the plane passing through three non-collinear points $ \mathbf{a},,\mathbf{b},,\mathbf{c} $ is

Options:

$ \frac{[\mathbf{a},\mathbf{b},\mathbf{c}]}{|\mathbf{a}\times \mathbf{b}+\mathbf{b}\times \mathbf{c}+\mathbf{c}\times \mathbf{a}|} $

B) $ \frac{2,[\mathbf{a},\mathbf{b},\mathbf{c}]}{|\mathbf{a}\times \mathbf{b}+\mathbf{b}\times \mathbf{c}+\mathbf{c}\times \mathbf{a}|} $

C) $ [\mathbf{a},\mathbf{b},\mathbf{c}] $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • The vector equation of the plane passing through points $ \mathbf{a},\mathbf{b},\mathbf{c} $ is $ \mathbf{r}.(\mathbf{a}\times \mathbf{b}-\mathbf{b}\times \mathbf{c}+\mathbf{c}\times \mathbf{a})=[\mathbf{a}\ \mathbf{b}\ \mathbf{c}] $ Therefore, the length of the perpendicular from the origin to this plane is given by $ \frac{[\mathbf{a},\mathbf{b},\mathbf{c}]}{|\mathbf{a}\times \mathbf{b}-\mathbf{b}\times \mathbf{c}+\mathbf{c}\times \mathbf{a}|} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें