Vector Algebra Question 311

If the vectors $ 6\mathbf{i}-2\mathbf{j}+3\mathbf{k},2\mathbf{i}+3\mathbf{j}-6\mathbf{k} $ and $ -3\mathbf{i}-6\mathbf{j}+2\mathbf{k} $ form a triangle, then it is

[Karnataka CET 1999]

Options:

A) Right angled

B) Obtuse angle

C) Equilateral

D) Isosceles triangle

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \overrightarrow{AB} $ = Position vector of $ \overrightarrow{B} $ - Position vector of $ \overrightarrow{A} $ $ =(2\mathbf{i}+3\mathbf{j}-6\mathbf{k})-(6,\mathbf{i}-2,\mathbf{j}+3\mathbf{k}) $ $ =-4\mathbf{i}+5\mathbf{j}-9\mathbf{k} $ Þ $ |\overrightarrow{AB}|,=\sqrt{16+25+81} $ $ =\sqrt{122} $ , $ \overrightarrow{BC}=\mathbf{i}+3\mathbf{j}+4\mathbf{k} $
    Þ $ |\overrightarrow{BC}|,=\sqrt{1+9+16} $ $ =\sqrt{26} $ and $ \overrightarrow{AC}=-3\mathbf{i}+8\mathbf{j}-5\mathbf{k} $
    Þ $ |\overrightarrow{AC}|,=\sqrt{98} $ Therefore, $ AB^{2}=122 $ , $ BC^{2}=26 $ and $ AC^{2}=98 $ .
    $ \Rightarrow AB^{2}+BC^{2}=26+122=148 $ Since $ AC^{2}>AB^{2}+BC^{2} $ , therefore $ \Delta ABC $ is an obtuse-angled triangle.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें