Vector Algebra Question 312

Question: If $ a=(1,,-1,,2),\ b=(-2,,3,,5) $ , $ \mathbf{c}=(2,,,-2,,4) $ and i is the unit vector in the x-direction, then $ (a-2b+3c),.,i= $

[Karnataka CET 2001]

Options:

A) 11

B) 15

C) 18

D) 36

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ \mathbf{a}=(1,,-1,,2),\mathbf{b}=(-,2,,3,,5),,\mathbf{c}=(2,,-2,,4) $ So, $ \mathbf{a}=(1,-1,2)\equiv \mathbf{i}-\mathbf{j}+2\mathbf{k};\mathbf{b}=(-2,3,5)\equiv -,2\mathbf{i}+3\mathbf{j}+5\mathbf{k} $ and $ \mathbf{c}=(2,-2,4)\equiv 2\mathbf{i}-2\mathbf{j}+4\mathbf{k} $
    $ \Rightarrow \mathbf{a}-2\mathbf{b}+3\mathbf{c}=(\mathbf{i}-\mathbf{j}+2\mathbf{k})-2(-2\mathbf{i}+3\mathbf{j}+5\mathbf{k}) $ $ +3(2\mathbf{i}-2\mathbf{j}+4\mathbf{k}) $ $ =11\mathbf{i}-13\mathbf{j}+4\mathbf{k} $ and $ (\mathbf{a}-2\mathbf{b}+3\mathbf{c}),.,\mathbf{i}=11. $