Vector Algebra Question 325

Question: If $ |\mathbf{a}|+|\mathbf{b}|,=,|\mathbf{c}| $ and $ \mathbf{a}+\mathbf{b}=\mathbf{c}, $ then the angle between a and b is

Options:

A) $ \frac{\pi }{2} $

B) $ \pi $

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \mathbf{a}+\mathbf{b}=\mathbf{c}\Rightarrow ,|\mathbf{a}{{|}^{2}}+|\mathbf{b}{{|}^{2}}+2\mathbf{a},.,\mathbf{b}=,|\mathbf{c}{{|}^{2}} $ and $ |\mathbf{a}|+|\mathbf{b}|,=,|\mathbf{c}| $
    $ \Rightarrow ,|\mathbf{a}{{|}^{2}}+|\mathbf{b}{{|}^{2}}+2|\mathbf{a}||\mathbf{b}|,=,|\mathbf{c}{{|}^{2}} $
    $ \therefore ,\mathbf{a},.,\mathbf{b}=,|\mathbf{a}||\mathbf{b}|\Rightarrow \cos \theta =1 $
    Þ $ \theta =0. $