Vector Algebra Question 329

Question: If $ |\mathbf{a}+\mathbf{b}|>|\mathbf{a}-\mathbf{b}|, $ then the angle between a and b is

Options:

A) Acute

B) Obtuse

C) $ \frac{\pi }{2} $

D) $ \pi $

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ |\mathbf{a}+\mathbf{b}|,>,|\mathbf{a}-\mathbf{b}| $ Squaring both sides, we get $ a^{2}+b^{2}+2\mathbf{a},.,\mathbf{b},>,a^{2}+b^{2}-2\mathbf{a},.,\mathbf{b} $ $ $
    Þ $ 4\mathbf{a}.\mathbf{b}>0 $
    Þ $ \cos \theta >0 $ . Hence $ \theta ,<,90{}^\circ $ , (acute).