Vector Algebra Question 330

Question: The direction cosines of the vector $ 3\mathbf{i}-4\mathbf{j}+5\mathbf{k} $ are

[Karnataka CET 2000]

Options:

A) $ \frac{3}{5},,\frac{-4}{5},\frac{1}{5} $

B) $ \frac{3}{5\sqrt{2}},,\frac{-4}{5\sqrt{2}},\frac{1}{\sqrt{2}} $

C) $ \frac{3}{\sqrt{2}},,\frac{-4}{\sqrt{2}},,\frac{1}{\sqrt{2}} $

D) $ \frac{3}{5\sqrt{2}},\frac{4}{5\sqrt{2}},,\frac{1}{\sqrt{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Vector $ \overrightarrow{A}=3i-4j+5k $ . We know that direction cosines of $ \overrightarrow{A} $ $ =\frac{3}{\sqrt{3^{2}+4^{2}+5^{2}}},,\frac{-4}{\sqrt{3^{2}+4^{2}+5^{2}}},,\frac{5}{\sqrt{3^{2}+4^{2}+5^{2}}} $ $ =\frac{3}{5\sqrt{2}},,\frac{-4}{5\sqrt{2}},,\frac{1}{\sqrt{2}} $ .