Vector Algebra Question 337

Question: If three points A, B, C are collinear, whose position vectors are $ \mathbf{i}-2\mathbf{j}-8\mathbf{k},5\mathbf{i}-2\mathbf{k} $ and $ 11,\mathbf{i}+,3,\mathbf{j}+7\mathbf{k} $ respectively, then the ratio in which B divides AC is

[RPET 1999]

Options:

A) 1 : 2

B) 2 : 3

C) 2 : 1

D) 1 : 1

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let the B divide AC in ratio $ \lambda :1 $ , then $ 5\mathbf{i}-2\mathbf{k}=\frac{\lambda (11\mathbf{i}+3\mathbf{j}+7\mathbf{k})+\mathbf{i}-2\mathbf{j}-8\mathbf{k}}{\lambda +1} $
    $ \Rightarrow 3\lambda -2=0 $
    $ \Rightarrow \lambda =\frac{2}{3} $ i.e., ratio = 2 : 3.