Vector Algebra Question 338

Question: The line through $ \mathbf{i}+3\mathbf{j}+2\mathbf{k} $ and perpendicular to the lines $ \mathbf{r}=(\mathbf{i}+2\mathbf{j}-\mathbf{k})+\lambda (2\mathbf{i}+\mathbf{j}+\mathbf{k}) $ and $ \mathbf{r}=(2\mathbf{i}+6\mathbf{j}+\mathbf{k})+\mu (\mathbf{i}+2\mathbf{j}+3\mathbf{k}) $ is

Options:

A) $ \mathbf{r}=(\mathbf{i}+2\mathbf{j}-\mathbf{k})+\lambda (-\mathbf{i}+5\mathbf{j}-3\mathbf{k}) $

B) $ \mathbf{r}=\mathbf{i}+3\mathbf{j}+2\mathbf{k}+\lambda (\mathbf{i}-5\mathbf{j}+3\mathbf{k}) $

C) $ \mathbf{r}=\mathbf{i}+3\mathbf{j}+2\mathbf{k}+\lambda (\mathbf{i}+5\mathbf{j}+3\mathbf{k}) $

D) $ \mathbf{r}=\mathbf{i}+3\mathbf{j}+2\mathbf{k}+\lambda (-\mathbf{i}+5\mathbf{j}-3\mathbf{k}) $

Show Answer

Answer:

Correct Answer: D

Solution:

  • The required line passes through the point $ \mathbf{i}+3\mathbf{j}+2\mathbf{k} $ and is perpendicular to the lines $ \mathbf{r}=(\mathbf{i}+2\mathbf{j}-\mathbf{k})+\lambda (2\mathbf{i}+\mathbf{j}+\mathbf{k}) $ and $ \mathbf{r}=(2\mathbf{i}+6\mathbf{j}+\mathbf{k})+\mu (\mathbf{i}+2\mathbf{j}+3\mathbf{k}) $ , therefore it is parallel to the vector $ \mathbf{b}=(2\mathbf{i}+\mathbf{j}+\mathbf{k})\times (\mathbf{i}+2\mathbf{j}+3\mathbf{k}) $ = $ (\mathbf{i}-5\mathbf{j}+3\mathbf{k}) $ Hence, the equation of the required line is $ \mathbf{r}=(\mathbf{i}+3\mathbf{j}+2\mathbf{k})+\lambda ‘(\mathbf{i}-5\mathbf{j}+3\mathbf{k}) $
    Þ $ \mathbf{r}=(\mathbf{i}+3\mathbf{j}+2\mathbf{k})+\lambda (-\mathbf{i}+5\mathbf{j}-3\mathbf{k}) $ , where $ \lambda =-\lambda ’ $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें