Vector Algebra Question 34

Question: If the vectors $ \alpha \hat{i}+\alpha \hat{j}+\gamma \hat{k},\hat{i}+\hat{k} $ and $ \gamma \hat{i}+\gamma \hat{j}+\beta \hat{k} $ lie on a plane, where $ \alpha ,\beta $ and $ \gamma $ are distinct non-negative numbers, then $ \gamma $ is

Options:

A) Arithmetic mean of $ \alpha $ and $ \beta $

B) Geometric mean of $ \alpha $ and $ \beta $

C) Harmonic mean of $ \alpha $ and $ \beta $

D) None of the above

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] If three vectors are co-planar.
    $ \Rightarrow \begin{vmatrix} \alpha & \alpha & \gamma \\ 1 & 0 & 1 \\ \gamma & \gamma & \beta \\ \end{vmatrix} =0 $
    $ \Rightarrow \alpha [0-\gamma ]-\alpha [\beta +\gamma ]+\gamma [\gamma -0]=0 $
    $ \Rightarrow -\alpha \gamma -\alpha \beta +\alpha \gamma +{{\gamma }^{2}}=0 $
    $ \Rightarrow {{\gamma }^{2}}=\alpha \beta $
    $ \Rightarrow $ So $ \alpha ,\beta ,\gamma $ are in G.P.