Vector Algebra Question 341

Question: The position vector of a point at a distance of $ 3\sqrt{11} $ units from $ \mathbf{i}-\mathbf{j}+2\mathbf{k} $ on a line passing through the points $ \mathbf{i}-\mathbf{j}+2\mathbf{k} $ and $ 3\mathbf{i}+\mathbf{j}+\mathbf{k} $ is

Options:

A) $ 10\mathbf{i}+2\mathbf{j}-5\mathbf{k} $

B) $ -8\mathbf{i}-4\mathbf{j}-\mathbf{k} $

C) $ 8\mathbf{i}+4\mathbf{j}+\mathbf{k} $

D) $ -10\mathbf{i}-2\mathbf{j}-5\mathbf{k} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • The equation of a line passing through the points $ A(\mathbf{i}-\mathbf{j}+2\mathbf{k}) $ and $ B(3\mathbf{i}+\mathbf{j}+\mathbf{k}) $ is $ \mathbf{r}=(\mathbf{i}-\mathbf{j}+2\mathbf{k})+\lambda (2\mathbf{i}+2\mathbf{j}-\mathbf{k}) $ The position vector of any point P which is a variable point on the line, is $ (\mathbf{i}-\mathbf{j}+2\mathbf{k})+\lambda (2\mathbf{i}+2\mathbf{j}-\mathbf{k}) $ \ $ \overrightarrow{AP}=\lambda (2\mathbf{i}+2\mathbf{j}-\mathbf{k})\Rightarrow |\overrightarrow{AP}|=\lambda \sqrt{9} $ Now, if $ \lambda $ $ \sqrt{9}=3\sqrt{9} $ i.e., $ \lambda =3 $ then the position vector of the point P is $ 7\mathbf{i}+5\mathbf{j}+1\mathbf{k} $ . If $ \lambda \sqrt{9}=-3\sqrt{9}, $ i.e., $ \lambda =-3 $ then the position vector of the point $ P $ is $ -5\mathbf{i}-5\mathbf{j}-1\mathbf{k} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें