Vector Algebra Question 343

Question: A unit vector which is coplanar to vector $ \mathbf{i}+\mathbf{j}+2k $ and $ \mathbf{i}+2\mathbf{j}+\mathbf{k} $ and perpendicular to $ \mathbf{i}+\mathbf{j}+\mathbf{k}, $ is

[IIT 1992; Kurukshetra CEE 2002]

Options:

A) $ \frac{\mathbf{i}-\mathbf{j}}{\sqrt{2}} $

B) $ \pm ,( \frac{\mathbf{j}-\mathbf{k}}{\sqrt{2}} ) $

C) $ \frac{\mathbf{k}-\mathbf{i}}{\sqrt{2}} $

D) $ \frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let the vector be given as $ a\mathbf{i}+b\mathbf{j}+c\mathbf{k}. $ For this vector to be coplanar with $ \mathbf{i}+\mathbf{j}+2\mathbf{k} $ and $ \mathbf{i}+2\mathbf{j}+\mathbf{k}, $ we will have $ a\mathbf{i}+b\mathbf{j}+c\mathbf{k}=p(\mathbf{i}+\mathbf{j}+2\mathbf{k})+r(\mathbf{i}+2\mathbf{j}+\mathbf{k}) $ This gives, $ a=p+r $ …..(i) $ b=p+2r $ …..(ii) $ c=2p+r $ …..(iii) For the vector $ a\mathbf{i}+b\mathbf{j}+c\mathbf{k} $ to be perpendicular to $ \mathbf{i}+\mathbf{j}+\mathbf{k}, $ we will have $ (a\mathbf{i}+b\mathbf{j}+c\mathbf{k}),.,(\mathbf{i}+\mathbf{j}+\mathbf{k})=0 $
    $ \Rightarrow a+b+c=0 $ ……(iv) Adding equation (i) to (iii), we get $ 4p+4r=a+b+c $
    $ \Rightarrow 4(p+r)=0\Rightarrow p=-r $ Now with the help of (i), (ii) and (iii), we get $ a=0, $ $ b=r, $ $ c=p=-r $ Hence the required vector is $ r(\mathbf{j}-\mathbf{k}) $ To be its unit vector $ r^{2}+r^{2}=1\Rightarrow r=\pm \frac{1}{\sqrt{2}} $ Hence the required unit vector is, $ \pm \frac{1}{\sqrt{2}}(\mathbf{j}-\mathbf{k}) $ . Trick : Check for option $ \text{(a)},\frac{\mathbf{i}-\mathbf{j}}{\sqrt{2}} $ is a unit vector and perpendicular to $ \mathbf{i}+\mathbf{j}+\mathbf{k} $ . But $ \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \\ \end{vmatrix} =-\frac{4}{\sqrt{2}}\ne 0 $ . So it is not coplanar with the given vector. Check for option $ \text{(b}),\pm ( \frac{\mathbf{j}-\mathbf{k}}{\sqrt{2}} ) $ is a unit vector and also perpendicular to $ \mathbf{i}+\mathbf{j}+\mathbf{k}, $ $ | ,\begin{matrix} 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ 1 & 1 & 2 \\ 1 & 2 & 1 \\ \end{matrix}, |=0 $ . So, it is also coplanar with the given vectors.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें