Vector Algebra Question 345

Question: The position vectors of the points A, B, C are $ (2\mathbf{i}+\mathbf{j}-\mathbf{k}), $ $ (3\mathbf{i}-2\mathbf{j}+\mathbf{k}) $ and $ (\mathbf{i}+4\mathbf{j}-3\mathbf{k}) $ respectively. These points

[Kurukshetra CEE 2002]

Options:

A) Form an isosceles triangle

B) Form a right-angled triangle

C) Are collinear

D) Form a scalene triangle

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \overrightarrow{AB}=(3-2)\mathbf{i}+(-2-1)\mathbf{j}+(1+1)\mathbf{k}=\mathbf{i}-3\mathbf{j}+2\mathbf{k} $ $ \overrightarrow{BC}=(1-3)\mathbf{i}+(4+2)\mathbf{j}+(-3-1)\mathbf{k}=-2\mathbf{i}+6\mathbf{j}-4\mathbf{k} $ $ \overrightarrow{CA}=(2-1)\mathbf{i}+(1-4)\mathbf{j}+(-1+3)\mathbf{k}=\mathbf{i}-3\mathbf{j}-2\mathbf{k} $ $ |\overrightarrow{AB}|,=\sqrt{1+9+4}=\sqrt{14} $ $ |\overrightarrow{BC}|,=\sqrt{4+36+16}=\sqrt{56}=2\sqrt{14} $ $ |\overrightarrow{CA}|,=\sqrt{1+9+4}=\sqrt{14} $ So, $ |\overrightarrow{AB}|+|\overrightarrow{AC}|=,|,\overrightarrow{BC},| $ and angle between AB and BC is 180°. Points A, B, C cannot form an isosceles triangle. Hence A, B, C are collinear.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें