Vector Algebra Question 346

Question: $ \mathbf{a},,\mathbf{b} $ and c are three vectors with magnitude $ |\mathbf{a}|,=4, $ $ |\mathbf{b}|,=4, $ $ |\mathbf{c}|,=2 $ and such that $ \mathbf{a} $ is perpendicular to $ (\mathbf{b}+\mathbf{c}),,\mathbf{b} $ is perpendicular to $ (\mathbf{c}+\mathbf{a}) $ and $ \mathbf{c} $ is perpendicular to $ (\mathbf{a}+\mathbf{b}). $ It follows that $ |\mathbf{a}+\mathbf{b}+\mathbf{c}| $ is equal to

[UPSEAT 2004]

Options:

A) 9

B) 6

C) 5

D) 4

Show Answer

Answer:

Correct Answer: B

Solution:

  •         Here |a|=4;   $ |\mathbf{b}|=4;\,|\mathbf{c}|=2 $                       and     $ \mathbf{a}.(\mathbf{b}+\mathbf{c})=0\Rightarrow \mathbf{a}.\mathbf{b}+\mathbf{a}\mathbf{.c}=0 $                          .....(i)                               $ \mathbf{b}.(\mathbf{c}+\mathbf{a})=0\Rightarrow \mathbf{b}\mathbf{.c}+\mathbf{b}\mathbf{.a}=0 $                 .....(ii)                             $ \mathbf{c}.(\mathbf{a}+\mathbf{b})=0\Rightarrow \mathbf{c}\mathbf{.a}+\mathbf{c}\mathbf{.b}=0 $                   .....(iii)                                 Adding (i), (ii) and (iii), we get,    $ 2[\mathbf{a}\mathbf{.b}+\mathbf{b}\mathbf{.c}+\mathbf{c}\mathbf{.a}]=0 $                                    \   $ |\mathbf{a}+\mathbf{b}+\mathbf{c}|=\sqrt{|\mathbf{a}{{|}^{2}}+|\mathbf{b}{{|}^{2}}+|\mathbf{c}{{|}^{2}}+2(\mathbf{a}.\mathbf{b}+\mathbf{b}.\mathbf{c}+\mathbf{c}.\mathbf{a})} $                                             $ =\sqrt{|\mathbf{a}{{|}^{2}}+|\mathbf{b}{{|}^{2}}+|\mathbf{c}{{|}^{2}}} $   =  $ \sqrt{16+16+4} $                                    
    

Þ $ |\mathbf{a}+\mathbf{b}+\mathbf{c}|=6 $ .