Vector Algebra Question 358

Question: The vector equation of a plane, which is at a distance of 8 unit from the origin and which is normal to the vector $ 2\mathbf{i}+\mathbf{j}+2\mathbf{k}, $ is

Options:

A) $ \mathbf{r}.(2\mathbf{i}+\mathbf{j}+\mathbf{k})=24 $

B) $ \mathbf{r}.(2\mathbf{i}+\mathbf{j}+2\mathbf{k})=24 $

C) $ \mathbf{r}.(\mathbf{i}+\mathbf{j}+\mathbf{k})=24 $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • Here $ d=8 $ and $ \mathbf{n}=2\mathbf{i}+\mathbf{j}+2\mathbf{k}) $ \ $ \mathbf{\hat{n}}=\frac{\mathbf{n}}{|\mathbf{n}|}=\frac{2\mathbf{i}+\mathbf{j}+2\mathbf{k}}{\sqrt{4+1+4}}=\frac{2}{3}\mathbf{i}+\frac{1}{3}\mathbf{j}+\frac{2}{3}\mathbf{k} $ Hence, the required equation of the plane is $ \mathbf{r}.( \frac{2}{3}\mathbf{i}+\frac{1}{3}\mathbf{j}+\frac{2}{3}\mathbf{k} )=8 $ or $ \mathbf{r}.(2\mathbf{i}+\mathbf{j}+2\mathbf{k})=24 $ .