Vector Algebra Question 367

Question: The position vector of the point in which the line joining the points $ \mathbf{i}-2\mathbf{j}+\mathbf{k} $ and $ 3\mathbf{k}-2\mathbf{j} $ cuts the plane through the origin and the points $ 4\mathbf{j} $ and $ 2\mathbf{i}+\mathbf{k} $ , is

Options:

A) $ 6\mathbf{i}-10\mathbf{j}+3\mathbf{k} $

B) $ \frac{1}{5}(6\mathbf{i}-10\mathbf{j}+3\mathbf{k}) $

C) $ -6\mathbf{i}+10\mathbf{j}-3\mathbf{k} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • The vector equation of the line joining the points $ \mathbf{i}-2\mathbf{j}+\mathbf{k} $ and $ -2\mathbf{j}+3\mathbf{k} $ is $ \mathbf{r}=(\mathbf{i}-2\mathbf{j}+\mathbf{k})+\lambda (-\mathbf{i}+2\mathbf{k}) $ ?..(i) The vector equation of the plane through the origin, $ 4\mathbf{j} $ and $ 2\mathbf{i}+\mathbf{k} $ is $ \mathbf{r},.,(4\mathbf{i}-8\mathbf{k})=0 $ ?..(ii) (Using $ \mathbf{r}.(\mathbf{a}\times \mathbf{b}+\mathbf{b}\times \mathbf{c}+\mathbf{c}\times \mathbf{a})=[\mathbf{a},\mathbf{b},\mathbf{c}] $ ) The position vector of any point on (i) is $ (\mathbf{i}-2\mathbf{j}+\mathbf{k}) $ $ +\lambda (-\mathbf{i}+2\mathbf{k}) $ . If it lies on (ii), then $ ((\mathbf{i}-2\mathbf{j}+\mathbf{k})+\lambda (-\mathbf{i}+2\mathbf{k})).(4\mathbf{i}-8\mathbf{k})=0 $
    Þ $ -4-20\lambda =0\Rightarrow \lambda =-\frac{1}{5} $ Putting the value of $ \lambda $ in $ (\mathbf{i}-2\mathbf{j}+\mathbf{k})+\lambda (-\mathbf{i}+2\mathbf{k}) $ , we get the position vector of the required point as $ \frac{1}{5}(6\mathbf{i}-10\mathbf{j}+3\mathbf{k}) $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें