Vector Algebra Question 368

Question: If a, b and c are unit vectors such that $ \mathbf{a}+\mathbf{b}-\mathbf{c}=0, $ then the angle between a and b is

[Roorkee Qualifying 1998; MP PET 1999; UPSEAT 2000; RPET 2002]

Options:

A) $ \pi /6 $

B) $ \pi /3 $

C) $ \pi /2 $

D) $ 2\pi /3 $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Given condition is $ \mathbf{a}+\mathbf{b}=\mathbf{c}. $ Using dot product, $ (\mathbf{a}+\mathbf{b}).(\mathbf{a}+\mathbf{b})=\mathbf{c}.\mathbf{c} $
    $ \Rightarrow \mathbf{a}.\mathbf{a}+\mathbf{b}.\mathbf{b}+2\mathbf{a}.\mathbf{b}=\mathbf{c}.\mathbf{c} $
    $ \Rightarrow ,|\mathbf{a}|.|\mathbf{a}|\cos 0{}^\circ +|\mathbf{b}|.|\mathbf{b}|\cos 0{}^\circ +2|\mathbf{a}|.|\mathbf{b}|\cos \alpha $ $ =,|\mathbf{c}|.|\mathbf{c}|\cos 0{}^\circ $ , $ (\because ,|\mathbf{a}|,=,|\mathbf{b}|,=,|\mathbf{c}|,=1) $
    $ \Rightarrow 1+1+2\cos \alpha =1\Rightarrow \cos \alpha =-\frac{1}{2}\Rightarrow \alpha =\frac{2\pi }{3} $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें