Vector Algebra Question 373

Question: The vector equation of the plane through the point (2, 1, ?1) and passing through the line of intersection of the plane $ \mathbf{r}.(\mathbf{i}+3\mathbf{j}-\mathbf{k})=0 $ and $ \mathbf{r}.(\mathbf{j}+2\mathbf{k})=0 $ is

Options:

A) $ \mathbf{r}.(\mathbf{i}+9\mathbf{j}+11\mathbf{k})=0 $

B) $ \mathbf{r}.(\mathbf{i}+9\mathbf{j}+11\mathbf{k})=6 $

C) $ \mathbf{r}.(\mathbf{i}-3\mathbf{j}-13\mathbf{k})=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • The vector equation of a plane through the line of intersection of the planes $ \mathbf{r}.(\mathbf{i}+3\mathbf{j}-\mathbf{k})=0 $ and $ \mathbf{r}.(\mathbf{j}+2\mathbf{k}) $ =0 can be written as $ (\mathbf{r}.(\mathbf{i}+3\mathbf{j}-\mathbf{k}))+\lambda (\mathbf{r}.(\mathbf{j}+2\mathbf{k}))=0 $ …..(i) This passes through $ 2\mathbf{i}+\mathbf{j}-\mathbf{k} $ \ $ (2\mathbf{i}+\mathbf{j}-\mathbf{k}).(\mathbf{i}+3\mathbf{j}-\mathbf{k})+\lambda (2\mathbf{i}+\mathbf{j}-\mathbf{k}).(\mathbf{j}+2\mathbf{k})=0 $ or $ (2+3+1)+\lambda (0+1-2)=0\Rightarrow \lambda =6 $ Put the value of $ \lambda $ in (i) we get $ \mathbf{r}.(\mathbf{i}+9\mathbf{j}+11\mathbf{k})=0 $ , which is the required plane.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें