Vector Algebra Question 378

Question: A vector of length 3 perpendicular to each of the vectors $ 3,\mathbf{i}+\mathbf{j}-4,\mathbf{k} $ and $ 6,\mathbf{i}+5,\mathbf{j}-2,\mathbf{k} $ is

Options:

A) $ 2,\mathbf{i}-2,\mathbf{j}+\mathbf{k} $

B) $ -,2,\mathbf{i}+2,\mathbf{j}+\mathbf{k} $

C) $ 2,\mathbf{i}+2,\mathbf{j}-\mathbf{k} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let the vector is $ x\mathbf{i}+y\mathbf{j}+z\mathbf{k}. $ Now according to the conditions, $ \sqrt{x^{2}+y^{2}+z^{2}}=3\Rightarrow x^{2}+y^{2}+z^{2}=9 $ …..(i) $ 6x+5y-2z=0 $ …..(ii) and $ 3x+y-4z=0 $ …..(iii) $ [\because $ it is perpendicular to both vectors, hence by $ a_1b_1+a_2b_2+a_3b_3=0] $ On solving the equation (i), (ii) and (iii), we get $ x=2, $ $ y=-2 $ and $ z=1. $ Therefore, the required vector is $ 2\mathbf{i}-2\mathbf{j}+\mathbf{k}. $ Trick : By inspection, the vector $ 2\mathbf{i}-2\mathbf{j}+\mathbf{k} $ is of length 3 and also perpendicular to the given vectors.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें