Vector Algebra Question 379

Question: If $ \mathbf{a}\ne \mathbf{0},\mathbf{b}\ne \mathbf{0} $ and $ |\mathbf{a}+\mathbf{b}|,=,|\mathbf{a}-\mathbf{b}|, $ then the vectors a and b are

[Roorkee 1986; MNR 1988; IIT Screening 1989; MP PET 1990, 97; RPET 1984, 90, 96, 99; KCET 1999]

Options:

A) Parallel to each other

B) Perpendicular to each other

C) Inclined at an angle of $ 60^{o} $

D) Neither perpendicular nor parallel

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ |\mathbf{a}+\mathbf{b}|=|\mathbf{a}-\mathbf{b}| $ ; Squaring both sides, we get $ 4\mathbf{a}.\mathbf{b}=0 $
    $ \Rightarrow \mathbf{a} $ is perpendicular to $ \mathbf{b}. $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें