Vector Algebra Question 379

Question: If $ \mathbf{a}\ne \mathbf{0},\mathbf{b}\ne \mathbf{0} $ and $ |\mathbf{a}+\mathbf{b}|,=,|\mathbf{a}-\mathbf{b}|, $ then the vectors a and b are

[Roorkee 1986; MNR 1988; IIT Screening 1989; MP PET 1990, 97; RPET 1984, 90, 96, 99; KCET 1999]

Options:

A) Parallel to each other

B) Perpendicular to each other

C) Inclined at an angle of $ 60^{o} $

D) Neither perpendicular nor parallel

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ |\mathbf{a}+\mathbf{b}|=|\mathbf{a}-\mathbf{b}| $ ; Squaring both sides, we get $ 4\mathbf{a}.\mathbf{b}=0 $
    $ \Rightarrow \mathbf{a} $ is perpendicular to $ \mathbf{b}. $