Vector Algebra Question 38

Question: The components of a vector $ \vec{a} $ along and perpendicular to a non-zero vector $ \vec{b} $ are

Options:

A) $ ( \frac{\vec{a}.\vec{b}}{{{| {\vec{b}} |}^{2}}} )\vec{b}\And \vec{a}-( \frac{\vec{a}.\vec{b}}{{{| {\vec{b}} |}^{2}}} )\vec{b} $

B) $ ( \frac{\vec{a}.\vec{b}}{{{| {\vec{a}} |}^{2}}} )\vec{b}\And \vec{a}+( \frac{\vec{a}.\vec{b}}{{{| {\vec{a}} |}^{2}}} )\vec{b} $

C) $ ( \frac{\vec{a}.\vec{b}}{{{| {\vec{a}} |}^{2}}} )\vec{a}-( \frac{\vec{a}.\vec{b}}{{{| {\vec{b}} |}^{2}}} )\vec{a} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ \overrightarrow{OM}= $ component of $ \vec{a} $ along $ \vec{b} $
    $ \overrightarrow{MA}= $ component of $ \vec{a} $
    Perpendicular to $ \vec{b} $
    $ \Delta ,OMA\Rightarrow \cos \theta =\frac{OM}{OA} $

$ \Rightarrow OM=|\overrightarrow{OM}|=|\overrightarrow{OA}|cos\theta =|\vec{a}|cos\theta $
$ \because \vec{a}.\vec{b}=|\vec{a}||\vec{b}|cos\theta =|\vec{b}|(OM) $

$ \therefore ,\overrightarrow{OM}=|\overrightarrow{OM}|\hat{b}=( \frac{\vec{a}.\vec{b}}{|\vec{b}|} )\frac{{\vec{b}}}{|\vec{b}|}=( \frac{\vec{a}.\vec{b}}{|\vec{b}{{|}^{2}}} )\vec{b} $
$ \overrightarrow{OM}+\overrightarrow{MA}=\overrightarrow{OA}\therefore \overrightarrow{MA}=\overrightarrow{OA}-\overrightarrow{OM} $
$ =\vec{a}-( \frac{\vec{a}\cdot \vec{b}}{|\vec{b}{{|}^{2}}} )\vec{b} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें