Vector Algebra Question 384

Question: If the position vectors of the vertices A, B, C of a triangle ABC are $ 7\mathbf{j}+10\mathbf{k}, $ $ -\mathbf{i}+6\mathbf{j}+6\mathbf{k} $ and $ -4\mathbf{i}+9\mathbf{j}+6\mathbf{k} $ respectively, the triangle is

[UPSEAT 2004]

Options:

A) Equilateral

B) Isosceles

C) Scalene

D) Right angled and isosceles also

Show Answer

Answer:

Correct Answer: D

Solution:

  • Given, position vectors of $ A,B $ and C are $ 7\mathbf{j}+10\mathbf{k} $ , $ -\mathbf{i}+6\mathbf{j}+6\mathbf{k} $ and $ -4\mathbf{i}+9\mathbf{j}+6\mathbf{k} $ respectively. \ $ |\overrightarrow{AB}|=|-\mathbf{i}-\mathbf{j}-4\mathbf{k}|=\sqrt{18} $ $ |\overrightarrow{BC}|=|-3\mathbf{i}+3\mathbf{j}|=\sqrt{18} $ $ |\overrightarrow{AC}|=|-4\mathbf{i}+2\mathbf{j}-4\mathbf{k}|=\sqrt{36} $ Clearly, $ AB=BC $ and $ {{(AC)}^{2}}={{(AB)}^{2}}+{{(BC)}^{2}} $ Hence, triangle is right angled isosceles.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें