Vector Algebra Question 385

Question: The value of b such that scalar product of the vectors $ (\mathbf{i}+\mathbf{j}+\mathbf{k}) $ with the unit vector parallel to the sum of the vectors $ (2\mathbf{i}+4\mathbf{j}-5\mathbf{k}) $ and $ (b\mathbf{i}+2\mathbf{j}+3\mathbf{k}) $ is 1, is

[MNR 1992; Roorkee 1985, 95; Kurukshetra CEE 1998; UPSEAT 2000]

Options:

A) ? 2

B) ? 1

C) 0

D) 1

Show Answer

Answer:

Correct Answer: D

Solution:

  • Parallel vector $ =(2+b)\mathbf{i}+6\mathbf{j}-2\mathbf{k} $ Unit vector $ =\frac{(2+b)\mathbf{i}+6\mathbf{j}-2\mathbf{k}}{\sqrt{b^{2}+4b+44}} $ According to the condition, $ 1=\frac{(2+b)+6-2}{\sqrt{b^{2}+4b+44}} $
    $ \Rightarrow b^{2}+4b+44=b^{2}+12b+36 $
    $ \Rightarrow 8b=8\Rightarrow b=1. $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें