Vector Algebra Question 386

Question: If three points A, B and C have position vectors $ (1,,x,,3),(3,,4,,7) $ and $ ap+bq+cr=1 $ respectively and if they are collinear, then $ (x,,y)= $

[EAMCET 2002]

Options:

A) (2, ? 3)

B) (? 2, 3)

C) (2, 3)

D) (? 2, ? 3)

Show Answer

Answer:

Correct Answer: A

Solution:

  • If A, B, C are collinear. Then $ \overrightarrow{AB}=\lambda ,\overrightarrow{BC} $
    Þ $ 2\mathbf{i}+(4-x)\mathbf{j}+4\mathbf{k}=\lambda ,[(y-3)\mathbf{i}-6\mathbf{j}-12\mathbf{k}] $
    $ \Rightarrow ,2=(y-3)\lambda $ …..(i) and $ 4-x=-6,\lambda $ …..(ii) Þ $ 4=-12,\lambda ,\Rightarrow \lambda =\frac{-1}{3} $ By (i), $ y=-3 $ and by (ii), $ x=2 $ ;
    $ \therefore ,(x,,y)=(2,,-3). $