Vector Algebra Question 387

Question: A unit vector in the $ xy- $ plane which is perpendicular to $ 4\mathbf{i}-3\mathbf{j}+\mathbf{k} $ is

[RPET 1991]

Options:

A) $ \frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}} $

B) $ \frac{1}{5}(3\mathbf{i}+4\mathbf{j}) $

C) $ \frac{1}{5},(3\mathbf{i}-4\mathbf{j}) $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ x^{2}+y^{2}=1 $ Let vector be $ x\mathbf{i}+y\mathbf{j}, $ then $ 4x-3y=0 $
    $ \Rightarrow 4x=3y\Rightarrow x=\frac{3}{5},y=\frac{4}{5}, $ Hence the required vector is $ \frac{1}{5}(3\mathbf{i}+4\mathbf{j}). $