Vector-Algebra Question 398
Question: Let $ \vec{r}=(\vec{a}\times \vec{b})\sin ,x+(\vec{b}\times \vec{c})\cos ,y+2(\vec{c}\times \vec{a}) $ where $ \vec{a},\vec{b},\vec{c} $ three non-coplanar vectors are. If $ \vec{r} $ is perpendicular to $ \vec{a}+\vec{b}+\vec{c}, $ the minimum value of $ x^{2}+y^{2} $ is
Options:
A) $ {{\pi }^{2}} $
B) $ \frac{{{\pi }^{2}}}{4} $
C) $ \frac{5{{\pi }^{2}}}{4} $
D) None of these
 Correct Answer: CShow Answer
  Answer:
Solution:
 BETA
  BETA 
             
             
           
           
           
          