Vector-Algebra Question 400
Question: The value of ‘x’ for which the angle between the vectors $ \overset{\to }{\mathop{a}},=2x^{2}\hat{i}+4x\hat{j}+\hat{k} $ and $ \overset{\to }{\mathop{b}},=7\hat{i}-2\hat{j}+x\hat{k} $ is obtuse are
Options:
A) $ x < 0 $
B) $ x>\frac{1}{2} $
C) $ 0<x<\frac{1}{2} $
D)   $ x\in R $
 Correct Answer: CShow Answer
  Answer:
Solution:
$ \Rightarrow ,\vec{a}.\vec{b}<0\Rightarrow 14x^{2}-7x<0 $   
$ \Rightarrow 7x(2x-1)<0\Rightarrow 14x( x-\frac{1}{2} )<0 $   
$ \Rightarrow x $    lies between 0 and   $ \frac{1}{2} $                            (By the Method of Intervals) i.e.,   $ 0<x<\frac{1}{2}. $    Hence, the angle between the given vectors is obtuse if   $ x\in ( 0,\frac{1}{2} ) $   .
 BETA
  BETA 
             
             
           
           
           
          