Vector-Algebra Question 400

Question: The value of ‘x’ for which the angle between the vectors $ \overset{\to }{\mathop{a}},=2x^{2}\hat{i}+4x\hat{j}+\hat{k} $ and $ \overset{\to }{\mathop{b}},=7\hat{i}-2\hat{j}+x\hat{k} $ is obtuse are

Options:

A) $ x < 0 $

B) $ x>\frac{1}{2} $

C) $ 0<x<\frac{1}{2} $

D) $ x\in R $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ 0<x<\frac{1}{2} $ $ \overset{\to }{\mathop{a}},.\overset{\to }{\mathop{b}},=(2x^{2}\hat{i}+4x\hat{j}+\hat{k}).(7\hat{i}-2\hat{j}+x\hat{k}) $ $ =2x^{2}(7)+(4x)(-2)+(1)(x)=14x^{2}-7x $ $ \hat{i}\cdot \hat{i}=1s=\hat{j}\cdot \hat{j}=1 $ The angle between vectors $ \overset{\to }{\mathop{a}}, $ and $ \overset{\to }{\mathop{b}}, $ is obtuse
    $ \Rightarrow ,\vec{a}.\vec{b}<0\Rightarrow 14x^{2}-7x<0 $
    $ \Rightarrow 7x(2x-1)<0\Rightarrow 14x( x-\frac{1}{2} )<0 $
    $ \Rightarrow x $ lies between 0 and $ \frac{1}{2} $ (By the Method of Intervals) i.e., $ 0<x<\frac{1}{2}. $ Hence, the angle between the given vectors is obtuse if $ x\in ( 0,\frac{1}{2} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें