Vector-Algebra Question 401

Question: If $ \vec{a},\vec{b},\vec{c},\vec{d} $ are the position vectors of points A, B, C and D respectively such that $ (\vec{a}-\vec{d}).(\vec{b}-\vec{c})=(\vec{b}-\vec{d}).(\vec{c}-\vec{a})=0 $ then D is the

Options:

A) Centroid of $ \Delta ABC $

B) Circumcentre of $ \Delta ,ABC $

C) Orthocentre of $ \Delta ,ABC $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c]
    $ \therefore ,(\overset{\to }{\mathop{a}},-\overset{\to }{\mathop{d}},)(\overset{\to }{\mathop{b}},-\overset{\to }{\mathop{c}},)=0 $
    $ \Rightarrow \overrightarrow{DA} $ and $ \overrightarrow{CB} $ are perpendicular $ (\overset{\to }{\mathop{b}},-\overset{\to }{\mathop{d}},)\cdot (\overset{\to }{\mathop{c}},-\overset{\to }{\mathop{a}},)=0 $
    $ \Rightarrow \overrightarrow{DB} $ and $ \overrightarrow{AC} $ are perpendicular
    $ \therefore $ D is orthocenter of $ \Delta ABC $