Vector-Algebra Question 404

Question: If the middle points of sides BC, CA & AB of triangle ABC are respectively D, E, F then position vector of centre of triangle DEF, when position vector of A, B, C are respectively $ \hat{i}+\hat{j},\hat{j}+\hat{k},\hat{k}+\hat{i} $ is

Options:

A) $ \frac{1}{3}(\hat{i}+\hat{j}+\hat{k}) $

B) $ (\hat{i}+\hat{j}+\hat{k}) $

C) $ 2(\hat{i}+\hat{j}+\hat{k}) $

D) $ \frac{2}{3}(\hat{i}+\hat{j}+\hat{k}) $

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] The position vector of points D, E, F are respectively $ \frac{\hat{i}+\hat{j}}{2}+\hat{k},\hat{i}+\frac{\hat{k}+\hat{j}}{2} $ and $ \frac{\hat{i}+\hat{k}}{2}+\hat{j} $ So, position vector of centre of $ \Delta DEF $ $ =\frac{1}{3}[ \frac{\hat{i}+\hat{j}}{2}+\hat{k}+\hat{i}\frac{\hat{k}+\hat{j}}{2}+\frac{\hat{i}+\hat{k}}{2}+\hat{j} ] $ $ =\frac{2}{3}[ \hat{i}+\hat{j}+\hat{k} ] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें