Vector-Algebra Question 406
Question: Let $ \overrightarrow{A}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k},\overrightarrow{B}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k} $ and $ \overrightarrow{C}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k} $ be three non-zero vectors such that $ \overrightarrow{C} $ is a unit vector perpendicular to both the vectors $ \overrightarrow{A} $ and $ \overrightarrow{B} $ .If the angle between $ \overrightarrow{A} $ and $ \overrightarrow{B} $ is $ \frac{\pi }{6} $ , then.
Options:
A) 0
B) 1
C) $ \frac{1}{4}(a_1^{2}+a_2^{2}+a_3^{2})(b_1^{2}+b_3^{2}) $
D) $ \frac{3}{4}(a_1^{2}+a_2^{2}+a_3^{2})(b_1^{2}+b_2^{2}+b_3^{2})(c_1^{2}+c_3^{2}) $
Correct Answer: CShow Answer
Answer:
Solution: