Question: Let   $ \overrightarrow{A}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k},\overrightarrow{B}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k} $    and   $ \overrightarrow{C}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k} $    be three non-zero vectors such that   $ \overrightarrow{C} $    is a unit vector perpendicular to both the vectors   $ \overrightarrow{A} $    and   $ \overrightarrow{B} $    .If the angle between   $ \overrightarrow{A} $    and   $ \overrightarrow{B} $    is   $ \frac{\pi }{6} $   , then.
Options:
A) 0
B) 1
C)   $ \frac{1}{4}(a_1^{2}+a_2^{2}+a_3^{2})(b_1^{2}+b_3^{2}) $
D)   $ \frac{3}{4}(a_1^{2}+a_2^{2}+a_3^{2})(b_1^{2}+b_2^{2}+b_3^{2})(c_1^{2}+c_3^{2}) $
  Show Answer
  Answer:
Correct Answer: C
Solution:
- [c]   $ {{ \begin{vmatrix}    a_1 & a_2 & a_3  \\    b_1 & b_2 & b_3  \\    c_1 & c_2 & c_3  \\ \end{vmatrix} }^{2}}={{[\overset{\to }{\mathop{A}},\overset{\to }{\mathop{B}},\overset{\to }{\mathop{C}},]}^{2}}={{((\overset{\to }{\mathop{A}},\times \overset{\to }{\mathop{B}},).\overset{\to }{\mathop{C}},)}^{2}} $      $ ={{{ |\overset{\to }{\mathop{A}},||\overset{\to }{\mathop{B}},|sin\frac{\pi }{6}(\overset{\to }{\mathop{C}},).\overset{\to }{\mathop{C}}, }}^{2}} $      $ =|\overset{\to }{\mathop{A}},{{|}^{2}}|\overset{\to }{\mathop{B}},{{|}^{2}}{{( \frac{1}{2} )}^{2}}|\overset{\to }{\mathop{C}},{{|}^{4}}=\frac{1}{4}|\overset{\to }{\mathop{A}},{{|}^{2}}|\overset{\to }{\mathop{B}},{{|}^{2}} $      $ =\frac{1}{4}(a_1^{2}+a_2^{2}+a_3^{2})(b_1^{2}+b_2^{2}+b_3^{2}) $