Vector-Algebra Question 408

Question: Given that the vectors $ \overline{\alpha } $ and $ \overset{\to }{\mathop{\beta }}, $ are non-collinear. The values of x and y for which $ \overset{\to }{\mathop{u}},-\overset{\to }{\mathop{v}},=\overset{\to }{\mathop{w}}, $ holds true if $ \overset{\to }{\mathop{u}},=2x\overset{\to }{\mathop{\alpha }},+y\overset{\to }{\mathop{\beta }},,\overset{\to }{\mathop{v}},=2,y\overset{\to }{\mathop{\alpha }},+3x\overset{\to }{\mathop{\beta }}, $ and $ \overset{\to }{\mathop{w}},=2\overset{\to }{\mathop{\alpha }},-5\overset{\to }{\mathop{\beta }}, $ are

Options:

A) $ x=2,y=1 $

B) $ x=1,y=2 $

C) $ x=-2,y=1 $

D) $ x=-2,y=-1 $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ \overset{\to }{\mathop{u}},-\overset{\to }{\mathop{v}},=\overset{\to }{\mathop{w}}, $ $ ( 2x\overset{\to }{\mathop{\alpha }},+y\overset{\to }{\mathop{\beta }}, )-( 2y\overset{\to }{\mathop{\alpha }},+3x\overset{\to }{\mathop{\beta }}, )=2\overset{\to }{\mathop{\alpha }},-5\overset{\to }{\mathop{\beta }}, $ $ (2x-2y)\overset{\to }{\mathop{\alpha }},+(y-3x)\overset{\to }{\mathop{\beta }},=2\overset{\to }{\mathop{\alpha }},-5\overset{\to }{\mathop{\beta }}, $
    $ \therefore 2x-2y=2…(i) $ and $ 3x-y=-5…(ii) $ Solving equations (i) and (ii), we get $ x=2 $ and $ y=1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें