Vector-Algebra Question 414

Question: If $ \overset{\to }{\mathop{a}},,\overset{\to }{\mathop{b}},,\overset{\to }{\mathop{c}}, $ are the position vectors of corners A, B, C of a parallelogram ABCD, then what is the position vector of the corner D?

Options:

A) $ \overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}}, $

B) $ \overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},-\overset{\to }{\mathop{c}}, $

C) $ \overset{\to }{\mathop{a}},-\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}}, $

D) $ -\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}}, $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Let O be the origin and ABCD be the parallelogram. In $ \Delta ,ODC, $ $ \overrightarrow{OD}=\overrightarrow{OC}+\overrightarrow{CD} $ $ \overrightarrow{CD}=-\overrightarrow{AB} $ and $ \overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA} $ [In $ \Delta ,AOB $ ] $ =\overset{\to }{\mathop{b}},-\overset{\to }{\mathop{a}}, $ Thus, $ \overrightarrow{CD}=-\overrightarrow{AB}=\overrightarrow{a}-\overrightarrow{b} $ So, $ \overrightarrow{OD}=\overrightarrow{c}+\overrightarrow{a}-\overrightarrow{b} $ [since, $ \overrightarrow{OC}=\overrightarrow{C} $ and $ \overrightarrow{CD}=\overrightarrow{a}-\overrightarrow{b} $ ]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें