Vector Algebra Question 42

Question: Let $ \alpha ,\beta ,\gamma $ be distinct real numbers. The points with position vectors $ \alpha \hat{i}+\beta \hat{j}+\gamma \hat{k},\beta \hat{i}+\gamma \hat{j}+\alpha \hat{k} $ and $ \gamma \hat{i}+\alpha \hat{j}+\beta \hat{k} $

Options:

A) Are collinear vectors

B) Form an equilateral triangle

C) Form a scalene triangle

D) Form a right-angled triangle

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ \alpha ,\beta $ and $ \gamma $ be distinct real numbers $ \alpha \hat{i}+\beta \hat{j}+\gamma \hat{k};\beta \hat{i}+\gamma \hat{j}+\alpha \hat{k};\gamma \hat{i}+\alpha \hat{j}+\beta \hat{k} $ $ \vec{a},\vec{b} $ and $ \vec{c} $ are collinear If $ a=\alpha ,\beta =\beta ,c=\gamma (\because \alpha =\hat{i}+\hat{j}+\hat{k}) $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें