Question: If   $ \overset{\to }{\mathop{p}}, $    and   $ \overset{\to }{\mathop{q}}, $    are two unit vectors inclined at an angle   $ \alpha  $    to each other than   $ |\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},|<1 $    if
Options:
A)   $ \frac{2\pi }{3}<\alpha <\frac{4\pi }{3} $
B)   $ \frac{4\pi }{3}<\alpha <2\pi  $
C)   $ 0<\alpha <\frac{\pi }{3} $
D)   $ \alpha =\frac{\pi }{2} $
  Show Answer
  Answer:
Correct Answer: A
Solution:
- [a]   $ |\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},|=(\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},).(\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},) $      $ =|\overset{\to }{\mathop{p}},{{|}^{2}}+|\overset{\to }{\mathop{q}},{{|}^{2}}+2\overset{\to }{\mathop{p}},\cdot \overset{\to }{\mathop{q}},=2+2\cos \alpha , $    Where   $ \alpha  $    is the angle between   $ \overset{\to }{\mathop{p}}, $    and   $ \overset{\to }{\mathop{q}}, $      $ =2(1+cos,\alpha )=4,cos^{2}( \frac{\alpha }{2} ) $      $ |\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},{{|}^{2}}<1\Rightarrow ( 4,{{\cos }^{2}}\frac{\alpha }{2}-1 )<0 $      $ ( 2,\cos \frac{\alpha }{2}-1 )( 2,\cos \frac{\alpha }{2}+1 )<0,-\frac{1}{2}<\cos \frac{\alpha }{2}<\frac{1}{2} $   
 $ \Rightarrow \frac{\pi }{3}<\frac{\alpha }{2}<\frac{2\pi }{3}\Rightarrow \frac{2\pi }{3}<\alpha <\frac{4\pi }{3} $