Vector Algebra Question 45

Question: If $ \hat{a}, $ $ \hat{b} $ and $ \hat{c} $ are three unit vectors, such that $ \hat{a}+\hat{b}+\hat{c} $ is also a unit vector and $ {\theta_1} $ , $ {\theta_2} $ and $ {\theta_3} $ are angles between the vectors $ \hat{a} $ , $ \hat{b} $ ; $ \hat{b} $ , $ \hat{c} $ and $ \hat{c} $ , $ \hat{a} $ , respectively, then among $ \theta _1^{{}} $ , $ \theta _2^{{}} $ and $ \theta _3^{{}} $

Options:

A) all are acute angles

B) all are right angles

C) at least one is obtuse angle

D) none of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ {{| \vec{a}+\vec{b}+\vec{c} |}^{2}}=1 $
    $ \Rightarrow {{| {\vec{a}} |}^{2}}+{{| {\vec{b}} |}^{2}}+{{| {\vec{c}} |}^{2}}+2| {\vec{a}} || {\vec{b}} |\cos {\theta_1} $ $ +2| {\vec{b}} || {\vec{c}} |\cos {\theta_2}+2| {\vec{c}} || {\vec{a}} |\cos {\theta_3}=1 $
    $ \Rightarrow \cos {\theta_1}+\cos {\theta_2}+\cos {\theta_3}=-1 $ Hence, one of $ {\theta_1},{\theta_2} $ and $ {\theta_3} $ should be an obtuse angle.