Vector Algebra Question 47

Question: If P and Q be the middle points of the sides BC and CD of the parallelogram ABCD, then $ \overrightarrow{AP}+\overrightarrow{AQ}= $

Options:

A) $ \overrightarrow{AC} $

B) $ \frac{1}{2}\overrightarrow{AC} $

C) $ \frac{2}{3}\overrightarrow{AC} $

D) $ \frac{3}{2}\overrightarrow{AC} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ \overrightarrow{AP},=\overrightarrow{AB}+\overrightarrow{BP}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD} $ ?..(i) $ \overrightarrow{AQ}=\overrightarrow{AD}+\overrightarrow{DQ}=\overrightarrow{AD}+\frac{1}{2}\overrightarrow{DC}=\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB} $ ?..(ii) By (i) and (ii), we get, $ \overrightarrow{AP}+\overrightarrow{AQ}=\frac{3}{2}(\overrightarrow{AB}+\overrightarrow{AD})=\frac{3}{2}(\overrightarrow{AB}+\overrightarrow{BC})=\frac{3}{2}\overrightarrow{AC} $ .