Vector Algebra Question 48

Question: If $ \vec{r}\cdot \vec{a}=\vec{r}\cdot b=\vec{r}\cdot \vec{c}=\frac{1}{2} $ for some non-zero vector $ \vec{r} $ , then the area of the triangle whose vertices are $ A(\vec{a}),B(\vec{b}) $ and $ C( {\vec{c}} ) $ is ( $ \vec{a},\vec{b},\vec{c} $ are non-coplanar)

Options:

A) $ | [\vec{a},\vec{b},\vec{c}] | $

B) $ | {\vec{r}} | $

C) $ | [\vec{a},\vec{b},\vec{c}]\vec{r} | $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Any vector $ \vec{r} $ can be represented in terms of three non-coplanar vectors $ \vec{a},,\vec{b} $ and $ \vec{c} $ as $ \vec{r}=x(\vec{a}\times \vec{b})+y(\vec{b}\times \vec{c})+z(\vec{c}+\vec{a}) $ ?(i) Taking dot product with $ \vec{a},\vec{b} $ and $ \vec{c} $ , respectively we have $ x=\frac{\vec{r}\cdot \vec{c}}{[\vec{a},\vec{b},\vec{c}]},y=\frac{\vec{r}\cdot \vec{a}}{[\vec{a},\vec{b},\vec{c}]} $ and $ z=\frac{\vec{r}\cdot \vec{b}}{[\vec{a},\vec{b},\vec{c}]} $ From (i), we have $ [\vec{a}\vec{b}\vec{c}]\vec{r}=\frac{1}{2}(\vec{a}\times \vec{b}\times \vec{c}+\vec{c}\times \vec{a}) $
    $ \therefore $ Area of $ \Delta ABC=\frac{1}{2}|\vec{a}\times \vec{b}+\vec{b}\times \vec{c}+\vec{c}\times \vec{a}| $ $ =|[\vec{a}\vec{b},\vec{c}]\vec{r}| $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें