Vector Algebra Question 57

Question: A vector whose modulus is $ \sqrt{51} $ and makes the same angle with $ \mathbf{a}=\frac{\mathbf{i}-2\mathbf{j}+2\mathbf{k}}{3},\mathbf{b}=\frac{-,4\mathbf{i}-3\mathbf{k}}{5} $ and $ \mathbf{c}=\mathbf{j}, $ will be

[Roorkee 1987]

Options:

A) $ 5\mathbf{i}+5\mathbf{j}+\mathbf{k} $

B) $ 5\mathbf{i}+\mathbf{j}-5\mathbf{k} $

C) $ 5\mathbf{i}+\mathbf{j}+5\mathbf{k} $

D) $ \pm ,(5\mathbf{i}-\mathbf{j}-5\mathbf{k}) $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Let the required vector be $ \alpha =d_1\mathbf{i}+d_2\mathbf{j}+d_3\mathbf{k} $ , where $ d_1^{2}+d_2^{2}+d_3^{2}=51 $ , (given) …..(i) Now, each of the given vectors $ \mathbf{a},\mathbf{b},\mathbf{c} $ is a unit vector $ \cos \theta =\frac{\mathbf{d},.,\mathbf{a}}{|\mathbf{d}|,|\mathbf{a}|}=\frac{\mathbf{d},.,\mathbf{b}}{|\mathbf{d}|,|\mathbf{b}|}=\frac{\mathbf{d},.,\mathbf{c}}{|\mathbf{d}|,|\mathbf{c}|} $ or $ \mathbf{d},.,\mathbf{a}=\mathbf{d},.,\mathbf{b}=\mathbf{d},.,\mathbf{c} $ $ |\mathbf{d}|=\sqrt{51} $ cancels out and $ |\mathbf{a}|=|\mathbf{b}|,=,|\mathbf{c}|,=1 $ Hence, $ \frac{1}{3}(d_1-2d_2+2d_3)=\frac{1}{5}(-4d_1+0d_2-3d_3)=d_2 $
    $ \Rightarrow d_1-5d_2+2d_3=0 $ and $ 4d_1+5d_2+3d_3=0 $ On solving, $ \frac{d_1}{5}=\frac{d_2}{-1}=\frac{d_3}{-5}=\lambda $ (say) Putting $ d_1,,d_2 $ and $ d_3 $ in (i), we get $ \lambda =\pm 1 $ Hence the required vectors are $ \pm (5\mathbf{i}-\mathbf{j}-5\mathbf{k}). $ Trick: Check it with the options.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें