Vector Algebra Question 62

Question: Let $ \overset{\to }{\mathop{p}},,\overset{\to }{\mathop{q}},,\overset{\to }{\mathop{r}}, $ be three mutually perpendicular vectors of the same magnitude. If a vector $ \vec{x} $ satisfies the equation $ \overset{\to }{\mathop{p}},\times {(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{q}},)\times \overset{\to }{\mathop{p}},}+\overset{\to }{\mathop{q}},\times {(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{r}},))\times \overset{\to }{\mathop{q}},} $ $ +\overset{\to }{\mathop{r}},\times {(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{p}},)\times \overset{\to }{\mathop{r}},}=\overset{\to }{\mathop{0}}, $ then $ \overset{\to }{\mathop{x}}, $ is given by

Options:

A) $ \frac{1}{2}(\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},-2\overset{\to }{\mathop{r}},) $

B) $ \frac{1}{2}(\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},+\overset{\to }{\mathop{r}},) $

C) $ \frac{1}{3}(\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},+\overset{\to }{\mathop{r}},) $

D) $ \frac{1}{3}(2\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},-\overset{\to }{\mathop{r}},) $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Let $ |\overset{\to }{\mathop{p}},|=|\overset{\to }{\mathop{q}},|=|\overset{\to }{\mathop{r}},|=k $
    Let $ \hat{p},\hat{q},\hat{r} $ be unit vectors along $ \overset{\to }{\mathop{p}},,\overset{\to }{\mathop{q}},,\overset{\to }{\mathop{r}}, $ respectively. Clearly $ \hat{p},\hat{q},\hat{r} $ are mutually perpendicular vectors, so any vector $ \overset{\to }{\mathop{x}}, $ can be written as $ a_1\hat{p}+a_2\hat{q}+a_3\hat{r} $ .

$ \therefore \overset{\to }{\mathop{p}},\times {(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{q}},)\times \overset{\to }{\mathop{p}},}=(\overset{\to }{\mathop{p}},.\overset{\to }{\mathop{p}},)(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{q}},)-{\overset{\to }{\mathop{p}},.(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{q}},)}\overset{\to }{\mathop{p}}, $
$ =k^{2}(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{q}},)-(\overset{\to }{\mathop{p}},.\overset{\to }{\mathop{x}},)\overset{\to }{\mathop{p}},[\because ,\overset{\to }{\mathop{p}},.\overset{\to }{\mathop{q}},=0] $
$ =k^{2}(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{q}},)-k\hat{p}.(a_1\hat{p}+a_2\hat{q}+a_3\hat{r})k\hat{p} $
$ =k^{2}(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{q}},-a_1\hat{p}) $
Similarly, $ \overset{\to }{\mathop{q}},\times {(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{r}},)\times \overset{\to }{\mathop{q}},}=k^{2}(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{r}},-a_2\hat{q}) $
and $ \overset{\to }{\mathop{r}},\times {(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{p}},)\times \overset{\to }{\mathop{r}},}=k^{2}(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{p}},-a_3\hat{r}) $
According to the given condition $ k^{2}(\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{q}},-a_1\hat{p}+\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{r}},-a_2\hat{q}+\overset{\to }{\mathop{x}},-\overset{\to }{\mathop{p}},-a_3\hat{r})=0 $

$ \Rightarrow k^{2}{3\overset{\to }{\mathop{x}},-(\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},+\overset{\to }{\mathop{r}},)-(a_1\hat{p}+a_2\hat{q}+a_3\hat{r})}=0 $

$ \Rightarrow k^{2}[2\overset{\to }{\mathop{x}},-(\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},+\overset{\to }{\mathop{r}},)]=\overset{\to }{\mathop{0}}, $

$ \Rightarrow \overset{\to }{\mathop{x}},=\frac{1}{2}(\overset{\to }{\mathop{p}},+\overset{\to }{\mathop{q}},+\overset{\to }{\mathop{r}},)[\because ,k\ne 0] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें