Vector Algebra Question 68

Question: A tetrahedron has vertices at $ O(0,,0,,0) $ , $ A(1,,2,,1),B(2,,1,,3) $ and $ C(-1,,1,,2) $ . Then the angle between the faces $ OAB $ and $ ABC $ will be

[MNR 1994; UPSEAT 2000; AIEEE 2003]

Options:

A) $ {{\cos }^{-1}}( \frac{19}{35} ) $

B) $ {{\cos }^{-1}}( \frac{17}{31} ) $

C) $ 30{}^\circ $

D) $ 90{}^\circ $

Show Answer

Answer:

Correct Answer: A

Solution:

  • Angle between two plane faces is equal to the angle between the normals $ {{\mathbf{n}}_1} $ and $ {{\mathbf{n}}_2} $ to the planes. $ {{\mathbf{n}}_1} $ the normal of face OAB is given by $ \overrightarrow{OA}\times \overrightarrow{OB}=| ,\begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 2 & 1 & 3 \\ \end{matrix}, |=5\mathbf{i}-\mathbf{j}-3\mathbf{k} $ …..(i) $ {{\mathbf{n}}_2} $ the normal of face ABC is given by $ \overrightarrow{AB}\times \overrightarrow{AC} $ $ 2-1,1-2,3-1 $ and $ -1-1,1-2,2-1 $ i.e., $ 1,,-1,2 $ and $ -2,-1,1. $
    $ \therefore ,{{\mathbf{n}}_2}=| ,\begin{matrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 2 \\ -2 & -1 & 1 \\ \end{matrix}, |=\mathbf{i}-5\mathbf{j}-3\mathbf{k} $ ?..(ii) If q be the angle between $ {{\mathbf{n}}_1} $ and $ {{\mathbf{n}}_2} $ , then $ \cos \theta =\frac{{{\mathbf{n}}_1},.,{{\mathbf{n}}_2}}{|{{\mathbf{n}}_1}|.|{{\mathbf{n}}_2}|}=\frac{5,+5+9}{\sqrt{35},.,\sqrt{35}}=\frac{19}{35} $
    $ \Rightarrow \theta ={{\cos }^{-1}}( \frac{19}{35} ) $ .


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें