Vector Algebra Question 71

Question: The vectors $ \overrightarrow{AB}=3\hat{i}+5\hat{j}+4\hat{k} $ and $ \overrightarrow{AC}=5\hat{i}-5\hat{j}+2\hat{k} $ are the sides of a triangle ABC. The length of the median through A is:

Options:

A) $ \sqrt{13} $ units

B) $ 2\sqrt{5} $ units

C) 5 units

D) 10 units

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Let the given vectors be $ \overrightarrow{AB}=3\hat{i}+5\hat{j}+4\hat{k} $ and $ \overrightarrow{AC}=5\hat{i}-5\hat{j}+2\hat{k} $ Let AM be the median through A
    $ \therefore \overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC}) $ $ =\frac{1}{2}[(3\hat{i}+5\hat{j}+4\hat{k})+(5\hat{i}-5\hat{j}+2\hat{k})] $ $ =\frac{1}{2}(8\hat{i}+6\hat{k})=(4\hat{i}+3\hat{k}) $
    $ \therefore $ Length of the median $ AM=\sqrt{4^{2}+3^{2}} $ $ =5,units $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें