Vector Algebra Question 74

Question: If $ \vec{a},\vec{b} $ and $ \vec{c} $ are the position vectors of the vertices of an equilateral triangle whose orthocentre is at the origin, then which one of the following is correct?

Options:

A) $ \vec{a}+\vec{b}+\vec{c}=\vec{0} $

B) $ \vec{a}+\vec{b}+\vec{c}=unitvector $

C) $ \vec{a}+\vec{b}=\vec{c} $

D) $ \vec{a}=\vec{b}+\vec{c} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] Position vectors of vertices A, B and C are $ \overset{\to }{\mathop{a}},,\overset{\to }{\mathop{b}}, $ and $ \overset{\to }{\mathop{c}}, $ . $ \because $ triangle is equilateral.
    $ \therefore $ Centroid and orthocenter will coincide. Centroid $ \equiv $ orthocenter position vector $ =\frac{1}{3}(\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}},) $ $ \because $ given in question orthocenter is at origin. Hence $ \frac{1}{3}(\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}},)=0 $ $ \overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}},=0 $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें