Vector Algebra Question 75
Question: Which one of the following is the unit vector perpendicular to both $ \vec{a}=-\hat{i}+\hat{j}+\hat{k} $ and $ \vec{b}=\hat{i}-\hat{j}+\hat{k} $ ?
Options:
A) $ \frac{\hat{i}+\hat{j}}{\sqrt{2}} $
B) $ \hat{k} $
C) $ \frac{\hat{j}+\hat{k}}{\sqrt{2}} $
D) $ \frac{\hat{i}-\hat{j}}{\sqrt{2}} $
Show Answer
Answer:
Correct Answer: A
Solution:
- [a] According to question   $ a=-\hat{i}+\hat{j}+\hat{k} $    and   $ b=\hat{i}-\hat{j}+\hat{k} $    Then,   $ a\times b= \begin{vmatrix}    i & j & k  \\    -1 & 1 & 1  \\    1 & -1 & 1  \\ \end{vmatrix}  $      $ =\hat{i}[1+1]-\hat{j}[-1-1]+\hat{k}[1-1] $      $ =2\hat{i}+2j+0=2(i+j) $    and   $ |a\times b|=\sqrt{4+4}=2\sqrt{2} $   
 $ \therefore $ Required unit vector $ =\pm \frac{2(i+j)}{2\sqrt{2}}=\pm \frac{i+j}{\sqrt{2}} $
 BETA
  BETA 
             
             
           
           
           
          