Vector Algebra Question 80

Question: $ \overset{\to }{\mathop{a}},,\overset{\to }{\mathop{b}},and\vec{c} $ are three vectors with magnitude $ |\overset{\to }{\mathop{a}},|=4,|\overset{\to }{\mathop{b}},|=4,|\overset{\to }{\mathop{c}},|=2 $ and such that $ \overset{\to }{\mathop{a}}, $ is perpendicular to is perpendicular to $ (\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}},),\overset{\to }{\mathop{b}}, $ is perpendicular to $ (\overset{\to }{\mathop{c}},+\overset{\to }{\mathop{a}},) $ and $ \overset{\to }{\mathop{c}}, $ is perpendicular to $ (\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},) $ . It follows that $ |\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}},| $ is equal to:

Options:

A) 9

B) 6

C) 5

D) 4

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Since, $ \overset{\to }{\mathop{a}},,\overset{\to }{\mathop{b}}, $ and $ \overset{\to }{\mathop{c}}, $ are three vectors with magnitude $ |\overset{\to }{\mathop{a}},|=|\overset{\to }{\mathop{b}},|=4 $ and $ |\overset{\to }{\mathop{c}},|=2, $
    As $ \overset{\to }{\mathop{a}}, $ is perpendicular to $ (\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}},) $

$ \Rightarrow \overset{\to }{\mathop{a}},.(\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}},)=0 $ or $ \overset{\to }{\mathop{a}},.\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{a}},.\overset{\to }{\mathop{c}},)=0 $ ?(i) $ \overset{\to }{\mathop{b}}, $ is perpendicular to $ (\overset{\to }{\mathop{c}},+\overset{\to }{\mathop{a}},) $

$ \Rightarrow \overset{\to }{\mathop{b}},.(\overset{\to }{\mathop{c}},+\overset{\to }{\mathop{a}},)=0 $ or $ \overset{\to }{\mathop{b}},.\overset{\to }{\mathop{c}},+\overset{\to }{\mathop{b}},.\overset{\to }{\mathop{a}},=0 $ ?(ii)

$ \Rightarrow \overset{\to }{\mathop{c}}, $ is perpendicular to $ (\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},) $
$ \overset{\to }{\mathop{c}},.(\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},)=0 $ or $ \overset{\to }{\mathop{c}},.\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{c}},.\overset{\to }{\mathop{b}},=0 $ ?(iii) From equations (i), (ii) and (iii), we get

$ \Rightarrow 2(\overset{\to }{\mathop{a}},.\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{b}},.\overset{\to }{\mathop{c}},+\overset{\to }{\mathop{c}},.\overset{\to }{\mathop{a}},)=0 $
Further we know that $ |\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}},{{|}^{2}}=|\overset{\to }{\mathop{a}},{{|}^{2}}+|\overset{\to }{\mathop{b}},{{|}^{2}}+|\overset{\to }{\mathop{c}},{{|}^{2}} $
$ +\overrightarrow{2a}.\vec{b}+\overrightarrow{2b}.\overrightarrow{c}+\overrightarrow{2c}.\overrightarrow{a} $

$ \Rightarrow |\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}},{{|}^{2}}=4^{2}+4^{2}+2^{2}+0=36 $
or $ |\overset{\to }{\mathop{a}},+\overset{\to }{\mathop{b}},+\overset{\to }{\mathop{c}},|=6 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें