Vector Algebra Question 81

Question: A vector $ \overset{\to }{\mathop{a}},=(x,y,z) $ of length $ 2\sqrt{3} $ which makes equal angles with the vectors $ \overset{\to }{\mathop{b}},=(y,-2z,3x) $ and $ \overset{\to }{\mathop{c}},=(2z,3x,-y) $ is perpendicular to $ \overset{\to }{\mathop{d}},=(1,-1,2) $ and makes an obtuse angle with y-axis is

Options:

A) (- 2, 2, 2)

B) $ (1,1,\sqrt{10}) $

C) (2, - 2, - 2)

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Since, $ \overset{\to }{\mathop{a}}, $ is $ \bot $ to $ \overset{\to }{\mathop{d}}, $ , so $ x-y+2z=0 $ ?(1) Moreover, $ |\overset{\to }{\mathop{b}},|=|\overset{\to }{\mathop{c}},|, $ so $ \overset{\to }{\mathop{a}},.\overset{\to }{\mathop{b}},=\overset{\to }{\mathop{a}},.\overset{\to }{\mathop{c}}, $
    as $ \overset{\to }{\mathop{a}}, $ makes equal angles with $ \overset{\to }{\mathop{b}}, $ and $ \overset{\to }{\mathop{c}}, $ . Thus $ xy-2yz+3xz=2xz+3xy-yz $

$ \Rightarrow xz-2xy-yz=0 $ ?(2) Also $ x^{2}+y^{2}+z^{2}=12 $ ?(3) and $ y<0 $
Put the value of y from eq. (1) in eq. (2), We get, $ x^{2}+2xz+z^{2}=0; $ so, $ x=-z $ and $ y=z $
Again put these values in eq. (3), we get $ z^{2}=4\Rightarrow z=\pm 2 $
But $ y<0 $ and $ y=z $ . Hence, $ z=-2=y $ and $ x=2 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें